
Van der Waals attraction in symmetric arrays

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1973 J. Phys. A: Math. Nucl. Gen. 6 1149

(http://iopscience.iop.org/0301-0015/6/8/011)

Download details:

IP Address: 171.66.16.87

The article was downloaded on 02/06/2010 at 04:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0301-0015/6/8
http://iopscience.iop.org/0301-0015
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A :  Math., Nucl. Gen., Vol. 6 ,  August 1973. Printed in Great Britain. 0 1973 

Van der Waals attraction in symmetric arrays 

D Langbein 
Battelle-Institut e.V., Frankfurt/Main, Germany 

Received 13 February 1973 

Abstract. The allowed electromagnetic modes in the presence of a symmetric array of 
macroscopic bodies are investigated. They are systematically classified by their behaviour 
with respect to the different symmetry operations. In the presence of two bodies we require 
the modes to be even or odd, in the presence of lattices we apply Floquet’s theorem. The 
van der Waals (vdW) energy of the array under consideration is calculated from the average 
quantum energy of the electromagnetic modes. Since finite boundary conditions are used, 
no difficulties regarding branchpoints and different Riemann surfaces are encountered. 
Closed expressions for the vdW energy in periodic lattices of spheres or cylinders are 
obtained, which can be explicitly evaluated at a reasonable rate of effort. 

1. Introduction 

Recently, a number of powerful methods for treating the vdW attraction between 
macroscopic bodies have been proposed. The integration of the average quantum energy 
of the allowed electromagnetic modes has been simplified by using Green function 
techniques (van Kampen et al 1968, Richmond and Ninham 1971, Gerlach 1971). 
Exact summations of the reaction field approach have been reported (Bade 1957, 
Renne et al 1967, 1968, Langbein 1971a, b). The overall equivalence of the two pro- 
cedures has been shown (Renne et al 1967, 1968, Langbein 1971a). The physical 
difficulties originally encountered in investigations based on Green function techniques 
have been eliminated by assuming finite boundary conditions (Langbein 1973a, b, c). 
The final energy expression turns out to be more transparent than that evolving from 
earlier treatments, that is, the frequency integration over the susceptibilities involved 
runs along the total imaginary axis rather than twice along the positive imaginary half- 
axis (Langbein 1973a, b, c). 

These drastic simplifications of the general procedure suggest a reconsideration of 
the vdW attraction in different geometrical structures. The successful application of the 
Green function technique has been reported for the case of half-spaces and multilayers 
(van Kampen et  a1 1968, Ninham and Parsegian 1970a, b). The reaction field approach 
was used for calculating the vdW energy between spheres and cylinders (Langbein 
1971c, 1972, Mitchell and Ninham 1972, Parsegian 1972, Langbein 1972, Mitchell et d 
1973a, b). Since this approach starts with fluctuations at a distinct position, it does not 
a priori account for the possible symmetry operations of the array under consideration. 

In order to find the vdW energy of an array of dielectric bodies we need the frequen- 
cies of all allowed electromagnetic modes. By using Green function techniques it is 
possible to exploit the different symmetry operations. The number of secular equations 
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resulting from the boundary conditions at the surfaces of the bodies investigated is 
reduced considerably if it is taken into account that any allowed mode remains allowed 
on application of any symmetry operation. If the array under consideration is invariant 
against inversion, as is true in the presence of two identical spheres or cylinders, the 
allowed modes are even or odd with respect to  inversion. If we consider a tetrahedral 
array, we find modes having s character and others which pick up a phase factor 
exp(2nlri/3) on rotation by 2n/3. When investigating a periodic lattice we conclude 
from the equivalence of all lattice sites that there are allowed modes gaining a phase 
factor exptiq. r j )  on any translation r j .  This fact is known as Floquet’s or Bloch’s 
theorem and has already been used in investigations on the vdW attraction between 
periodic multilayers (Langbein 1973c), which may be considered as one-dimensional 
lattices. Floquet’s theorem reduces the set of secular equations between the field 
amplitudes in the different layers to finite order. 

In the present paper we treat arrays of both spheres and cylinders. In particular, we 
consider pairs and periodic lattices. We emphasize the equivalence of the treatment of 
spheres and cylinders in all steps of the calculations. The main difference between the 
two cases is the fact that the modes used in the presence of spheres are not normalizable 
without introducing a cavity (finite boundary conditions), whereas in the presence of 
cylinders the cavity is not needed. 

However, when integrating the change in energy of the allowed modes relative to 
the limit of infinite separation, we shift the frequency integration to the imaginary axis. 
This implies that the radial wavenumber of the spherical modes becomes imaginary, too, 
and the size of the cavity can be increased towards infinity without further obstacles. 
Now the treatment of spheres and cylinders is fully equivalent again. In both cases the 
dependence of the coupling parameters on the separation is given by modified Bessel 
functions of the second kind. 

The effort involved for the investigation of the vdW attraction in periodic lattices 
is only slightly higher than that required in the presence of pairs. This is due to the 
application of Floquet’s theorem, which reduces the field amplitudes at the different 
lattice sites to those at an individual site. If we restrict the investigations to dipole and 
quadrupole interactions, only a few interaction terms are left. The typical difference 
to  the findings from a continuum approach (van Kampen er al 1968, Lifshitz 1955, 
Dzyaloshinskii er al 1959) is the fact that the Green function is now periodic and that 
the wavenumber integration is reduced to one cell of the reciprocal lattice. 

2. Eigenvectors 

The problem of finding the allowed electromagnetic modes for an array of dielectric 
bodies assumes that it is possible to solve Maxwell’s equations in the presence of a single 
body. Complete sets of eigenvectors D(r, s) of Maxwell’s equations are available for 
dielectric spheres, cylinders and films (Morse and Feshbach 1953). In the case of spheres 
it is convenient to  start with the electric and magnetic modes 

D,(r, s) = curl curl rfm(kr)Y;(9, cp) 

D,(r, s) = k curl rf,(kr)Y:($, cp) 

where f,(kr) is a spherical Bessel function jm(kr) ,  y,(kr) of the first or second kind. s 
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represents the triplet 

s = (k, m, p) 
and k satisfies the relation 

In the case of cylinders we have analogously 

D l ( r ,  s)  = curl curl n eik’Fm(/r) eima 

(2b) 
0 

C 
D,(r, s)  = -(~p)l/~ curl n eik‘Fm(/r) eima 

where Fm(/r) is a modified cylindrical Bessel function Im(/r),  Km( / r )  of the first or second 
kind. n is the unit vector parallel to the cylinder axis. s represents the triplet 

s = (k, I ,  m) (3b) 
and k and 1 satisfy the relation 

2 

k Z  = /’+ (:) c(o)~(o). 

For films see the respective equations (1) to (4) in Langbein (1973~). 

3. Boundary conditions 

The allowed eigenvectors D(r, s) of Maxwell’s equations must not have singularities in 
finite space. The fields inside the bodies under consideration, therefore, are not allowed 
to contain Bessel functions of the second kind. At the boundaries we have to assume 
continuity of the normal components of the electric displacement and the magnetic 
induction and of the tangential components of the electric and the magnetic fields. 
These are six boundary conditions, which can be reduced to four owing to the fact that (i) 
the normal component of the electric displacement and the tangential components of the 
magnetic field, and (ii) the normal component of the magnetic induction and the tangen- 
tial components of the electric field, are linearly dependent. 

Satisfying these boundary conditions in the presence of a single sphere yields the 
exterior fields (Ruppin and Englman 1968) 

Dl(r> s) = curl curl r(a1 l j m ( k o r ) + a l 2 Y m ( k o r ) ) Y ~ ( $ ,  CP) 

Dz(r, s) = ko  curl 4 0 2  ljm(kor) + a22~m(kOr))Y399 CP) 

( 5 4  
( 6 4  

( 7 4  

where 
a1 ljm(koR)+a12~m(kOR) 

Equations (7a) and (8a) relate to a sphere of radius R,  electric susceptibility cl(w), and 
magnetic susceptibility pl(w) in a surrounding medium with susceptibilities c0(w), po(w). 
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Satisfying the boundary conditions in the presence of a single cylinder requires 
mixing of electric and magnetic modes. We obtain the exterior field (Langbein 1972, 
Mitchell et al 1973a, b) 

D(r, s) = curl curl n eikz(al ,~m(10r)+a12K~(10r) )  eimq 

U 

C 
+-(copo)1'2 curl n e ik2(a2 ,~m(~0r)+  az2Km(lOr))  eimq 

where 

~- km U cop' - 
lol,R c Pl(~oPo)1'2 

(U  , lZm(loR) + a , ,Km(loR))Zm(I1 R )  

As above, the radius of the cylinder is R,  its susceptibilities are €,(a), pl (w) ,  and those in 
the exterior are c 0 ( o ) ,  po(w). 

With respect to the boundary conditions in the case of films, see equations (5) and (6) 
in Langbein (1973~). 

4. Normalizability 

The boundary conditions at the surfaces of the bodies under consideration render only 
two relations between the four amplitudes a,, ,  a 1 2 ,  a,,, a 2 2 .  We have to look for an 
additional physical argument yielding two further relations. This additional argument is 
the normalizability of all allowed electric or magnetic modes. 

From the asymptotic behaviour of the spherical Bessel functions for large arguments 
jm(kr )  'v ( k r ) - l  sin(kr-imlt), y,(kr) 2 - ( k r ) - '  cos(kr-imn) we learn that the electric 
and magnetic modes ( 5 2 )  and (6a) cannot be normalized in infinite space. We rather 
have to introduce finite boundaries and to normalize all modes within the resulting 
cavity. Consequently, the allowed modes depend on the properties and the size of the 
cavity. In the following calculations of the vdW energy between symmetric arrays of 
bodies we will eliminate the properties of the cavity by increasing its size towards 
infinity. 

The cavity eventually turns out to be an auxiliary condition for splitting up the 
continuous energy spectrum of allowed electromagnetic modes during the integration. 

Several types of cavities may be suggested : 
(i) a perfectly conducting cavity, which requires that the tangential components of 

(ii) a perfectly diamagnetic cavity, which requires that the tangential components of 

(iii) a totally reflecting cavity, which requires that the normal components of the 

the electric field vanish at the boundaries; 

the magnetic field vanish at the boundaries ; 

electric displacement and of the magnetic induction vanish at the boundaries. 
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All three types of cavities have been used repeatedly in investigations into normal 
modes of dielectric bodies. In view of the fact that the cavity only serves as an auxiliary 
condition in our investigations, we choose it to be totally reflecting. Then. electric and 
magnetic modes can be treated fully symmetrically. 

When considering a single sphere with radius R it is convenient to let the cavity 
also be a sphere of radius S. We obtain the auxiliary boundary conditions. 

aiijm(koS)+a,zym(koS) = 0 ( 9 4  

(1 0 4  l jm(koSI+ a, ,~m(koS) = 0. 
When considering a single cylinder we do not need a cavity at all. The Bessel functions 
I , (kr)  increase exponentially with increasing argument, that is, we know that the correct 
limit for infinite size of the cavity is given by 

a,,  = 0 (9b) 

a,, = 0. (1 Ob) 

In the case of the films, where the possible electric and magnetic modes are mainly plane 
waves, we again need a cavity and choose it to be a thick plate (see Langbein 1973~). 
Equations (7) to  (10) enable us to calculate all allowed modes in the presence of single 
bodies. 

5. Addition theorems 

The simplest example of a symmetric array of dielectric bodies is that with two identical 
bodies 1 and 2. In this case we build up all modes symmetrically from those centred 
around the individual bodies. The exterior fields in the presence of two bodies now 
contain eight amplitudes al l ( j ) ,  a,,(j), a,,(j), a,,(j); j = 1,2. The subscripts, as in 
equations ( 5 )  and (6),  refer to electric and magnetic modes and to Bessel functions of the 
first and second kind, respectively. 

Between these eight amplitudes, the boundary conditions at the surfaces of the 
bodies 1 and 2 give rise to four relations analogous to equations (7) and (8). However, 
before using these relations we have to transform the fields from body 1 to  body 2 and 
vice versa. In other words, we need the addition theorems between the eigenvectors 
D(v - r j ,  s) of Maxwell’s equations. The existence of such addition theorems is guaranteed 
by the fact that any complete set of eigenvectors of a linear differential equation can be 
expanded in terms of any other complete set. 

In order to  derive the addition theorems for the spherical fields (la), (2a) it is appro- 
priate to  introduce inversely oriented spherical coordinates, as shown in figure 1. By 

Figure 1. Inverted spherical coordinates 
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repeatedly differentiating the addition theorem for spherical Bessel functions of order 
zero (see equations (10.1.45) and (10.1.46) in Abramowitz and Stegun 1965) with respect 
to distance and angle we obtain 

(1 la) 
m 

fm(kIr-rzI)Yk(92, C P ~ )  = (2n+ 1)Crtn(kIr2 -r1 t)jn(kIr-rlt)Yig($l > C P ~ )  
n = g  

where 
r ( m -  v++)r (n-  v++)r(p+ v++)  

r (m+n-p-  v+;)r(p++)r(+) 

( m  + n - v) ! 
X ( m  + n-  P -2v + + ) f m + n  - - 2v(i) .  (m - p - v) !(n - p - v) ! v ! 

The corresponding theorem for the electric modes (la) is obtained by applying another 
curl operator, which mainly entails an exchange of the coefficients Vg,(i) and W i n ( [ )  
at the right-hand side of (13a). We find both addition theorems to couple electric and 
magnetic modes. A detailed description of the derivation of relations (1  la) to (15a) will 
be reported elsewhere. 

The addition theorems for the cylindrical fields (lb), (2b) are readily available in 
literature. Introducing mutually inverted cylindrical coordinates as shown in figure 2, 
we obtain from Grafs  addition theorem (see equation (9.1.79) in Abramowitz and 
Stegun 1965) 

+ m  

'm(lIr-~zI) exp(imcp2) = 1 Im+n(IIr2 -r1I)Zn(~Ir--rlt) exp{in(cp, +.I} (1 Ib) 
n = - m  

Figure 2. Inverted cylindrical coordinates. 
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f X  

KJlIr-rZI) exp(im~2) = 1 K m + n ( l I r Z - r l I ) z n ( ~ I r - r l I )  exp(in~1). ( 1  2b) 
n = - c o  

These theorems apply immediately also to the vector fields ( lb ) ,  (2b). In the case of 
spheres we find electric and magnetic mode coupling by the addition theorem, whereas 
in the case of cylinders this coupling is caused by the boundary conditions. 

6. Pair states: spheres 

Returning now to thecalculation ofallowed modes in the presence of two identical bodies 
1 and 2 we note that the spherical addition theorem (13a) basically couples modes of 
different orders m and n. Any dipole, quadrupole, or octupole at r 2  induces dipoles, 
quadrupoles, and octupoles at r l ,  and vice versa. There is no coupling of modes showing 
different rotational behaviour. Hence, we build up the allowed modes from 

where 

ai(m, jYm(klr-rjl) = ail(m, j)jm(klr-rjl)+ aiZ(m3 j)Ym(klr-rjl). ( 1  7a1 

The inversion ofthe order of the spherical harmonics Y i p ( g j ,  cpj )  centred around bodies 1 
and 2 guarantees the same rotational behaviour according to  (p2 = - 'pl. Transposing 
the modes centred around body 2 to body 1 by means of addition theorem (13a), we find 
these terms to contain only Bessel functions jn(klr-rll) of first kind. This is due to the 
condition Ir-rlI < Ir2 -rll involved in addition theorems ( 1  l a )  and (13a). This condition 
is always satisfied at the surface ofbody 1 ,  where continuity ofthe different components of 
the electromagnetic field causes boundary conditions (7a), (Sa). We wind up with 

where 
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To satisfy the boundary conditions at the surface of body 2 we have to transpose the 
modes centred at body 1 to body 2 and once more apply equations (74  and (Sa). The 
resulting conditions differ from equations (18a) and (194 by the exchange of bodies 1 and 
2 and by inversion of the order p. 

We know from symmetry arguments that the allowed modes must be even or odd on 
exchange of bodies 1 and 2 ; in fact both systems of boundary conditions are found to 
become identical by using 

and 

q ( m ,  2) = +a, (m,  1); a2(m, 2) = Ta,(m, 1). (260) 

The electric and the magnetic contributions to the allowed modes have the inverse 
symmetry behaviour. We obtain 

x(a,(n, l )Cm+al (n ,  l)W:vl = 0. 

The final boundary conditions (27a) and (28a) for the amplitudes all(m, j ) ,  a,,(m, j ) ,  
a,,(m, j )  and ~ ~ ~ ( m ,  j )  at body 1 and body 2 do not impose any condition on the ratios 
al,(m, j)/all(m, j )  and azz(m,j)/a21(m, j ) ,  that is, for normalizing the modes under 
investigation we are free to use equations (9a) and (loa). Then all amplitudes are fixed. 
All possible eigenfrequencies result from the secular determinant following from (9a), 
(loa) and (27a), (28~) .  

7. Pair states: cylinders 

The investigation of allowed modes in the presence of two cylinders is analogous to  that 
in the presence of two spheres. However, the calculations are mathematically simpler 
because the normalization conditions (9b), (lob) exclude Bessel functions of the first 
kind from the very beginning. Accordingly, we build up the allowed modes from 

w, s) = 1 (curl curl n eikzalz(m, j)Km(llr - rjl)  exp(imcpj) 
j =  1,2  m =  - r 

0 
+ ; ( ~ ~ p ~ ) l ”  curl n eikia2,(m, j)Km(&--rj1) exp(imcpj) 
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Transposing the modes centred at body 2 to body 1 by means of the addition theorem 
(12b), we again find the transposed terms to  contain only Bessel functions In(llr-rll) of 
the first kind. Satisfying the boundary conditions (7b) and (8b) at the surface of body 1 
yields 

~ ~ ( m ) a ~ ~ ( m .  1)+)-1(m) 1 a 1 2 h  2)Km+n(lIr2-~1I) 
+z 

n =  - m 

To satisfy the boundary conditions at the surface of body 2, we transpose the modes 
centred at body 1 to body 2 and again apply (7b) and (8b). The resulting conditions 
differ from equations (18b) and (19b) only by the exchange of body 2 for body 1. Thus, by 
the same symmetry argument as in the case of spheres we may put 

a12(m, 2) = f a 1 2 ( m ,  1); a2,(m,  2) = f a 2 , ( m ,  1) (26b) 
and obtain 

f 3 C  

~1(m)a12(m, I)* 1 ('1(m)a12(n> I ) +  ~2(n)a22(n, 1NKm+AlIr2-rlII = 0 (27b) 
n =  - 30 

+ E  

~l(m)a22(m3 I)* 1 (~2(m)a12(n, 1)+;,2(n)a22(n, l))Km+n(lIr2-rlI) = 0. (28b) 

Contrary to our procedure in the presence of two spheres in equation (16b) we did not 
n = - x  
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invert the axis of rotation at body 2. This is possible because the cylindrical Bessel 
functions are even with respect to order and in view of the summation over all orders m. 
This symmetry permits a further reduction of conditions (27b) and (28b) by putting 

(29b) 

It is sufficient to consider positive values of m. 
The characteristic difference between the final boundary conditions (27b) and (28b) 

for cylinders and the respective equations (27a) and (28a) for spheres is the fact that by 
normalization we were able to cancel Bessel functions of the first kind. In the case of 
spheres we have to consider amplitude vectors al (m,  l), a,(m, l), in the case of cylinders 
we need only the second components a,,(m, l), a,,(m, 1). This difference will disappear 
in the investigations into the vdW energy between bodies 1 and 2 as discussed in §§ 10 
and 11. 

a 1 2 ( - m ,  1) = ka,,(m, 1); a,,(-m, 1) = Ta2,(m, 1). 

8. Complex integration 

The retarded van der Waals energy between two bodies 1 and 2 is given by the energy 
gain of the electromagnetic radiation field in the presence of 1 and 2. We have to provide 
the eigenfrequencies om resulting from the final boundary conditions (27) and (28) with 
their average quantum energy kT In sinh(hwm/2kT) and to sum the energy change 
relative to the limit lr2--rl1 = CO over all allowed modes m :  

m 

By restricting ourselves to the real part of the total energy gain we account for the 
continuous energy exchange between the electromagnetic modes (photons) and the 
electron transitions of the bodies under consideration. The energy dissipation from the 
photons to the electrons enters this semiclassical treatment via the imaginary part of the 
electric and magnetic susceptibilities. In thermal equilibrium it is balanced by an 
equivalent energy dissipation from the electrons to the photons. 

The most convenient method of carrying out the summation (30) is the Green 
function technique introduced by van Kampen et a1 (1968) and generalized by Ninham 
et a1 (Ninham et al 1970, Richmond and Ninham 1971). It makes use of the analytical 
identity 

where m runs over all zeros and n runs over all poles of g(o) within the contour of integra- 
tion. This contour must not contain poles of f (w) .  If g(w) is chosen such that its zeros 
and poles yield the eigenfrequencies of the allowed electromagnetic modes for separations 
of the bodies under consideration IY, -rll  and CO, we can use (31) directly for summing 
(30). This objective is achieved if 

hw f (o)  = kT In sinh- 
2kT 

and if g(w) equals the ratio of the secular determinants resulting from (27) and (28) for 
finite and infinite separation. The contour of integration has to enclose the positive 
half-plane. It runs along the imaginary axis at the right-hand side of the branchpoints of 
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In sinh(hw/2kT) and is closed by an infinite semicircle. Since the integral along the semi- 
circle vanishes with increasing radius, we are left with the integral along the imaginary 
axis from -io0 to  + im.  

9. Imaginary frequences 

It follows that we need the secular determinants resulting from boundary conditions (27) 
and (28) only at imaginary values of the frequency. According to (4a) we are dealing 
with purely imaginary arguments of the Bessel functions in the case of spheres, whereas 
in the case of cylinders the argument of the Bessel functions becomes strictly real (see 
equation (4b)). We may proceed directly to the limit of infinite cavities S + CO. The 
spherical normalization conditions (9a) and (loa) are thus reduced to 

for Im k 2 0. . a12 a2 2 lim - = lim - = + i  - 
S - m a l l  s - t m a 2 1  

Inserting (35a) into (17a) yields 

The right-hand side of (34a) decreases exponentially with increasing modules, inde- 
pendent of the sign of Im k. This suggests that spherical Bessel functions hg)(kr), hE)(kr) 
should be used from the very beginning. However, when doing so it is not possible to 
satisfy boundary conditions (7) and (8) at the surface of bodies 1 and 2. Transition to 
imaginary values of the radial wavenumber k is not possible before the final secular 
equations have been derived. 

Fixing the relative amplitudes ai2/ail by means of (32a) removes the last difference 
between the treatment of spheres and cylinders. hc)(i() equals i-(m+2)(&r()-112Km+ 1,2((‘) 

(see equation (10.2.15) in Abramowitz and Stegun 1965). 
It should be pointed out that the radial wavenumber 1 in the case ofcylinders becomes 

imaginary for small values of the translational wavenumber k. The term K,(llr2 -rll) 
then oscillates instead of decreasing exponentially. For proper treatment of this case a 
cavity should have been used. However, after shifting the frequency integration to the 
imaginary axis, 1 is real everywhere, and the procedure adopted is finally justified. 

When considering the attraction between two films (see Langbein 1973c) it is possible 
to represent the allowed modes by plane waves. We need a cavity for normalization. The 
shift of the frequency integration to the imaginary axis again justifies the transition to 
infinite cavities. We are left with exponentially decreasing modes, which still satisfy 
the boundary conditions at the surfaces of the films. In view of this fact it has been 
believed that investigations of the vdW energy merely require calculation of the energy 
of exponentially decreasing surface modes (van Kampen et a1 1968, Richmond and 
Ninham 1971, Gerlach 1971). However, the present investigations show that the surface 
mode hypothesis, besides causing branchpoints and different Riemann surfaces, is 
restricted to  simple planar geometries such as half-spaces or multilayers. 

10. Pair energy : spheres 

The boundary conditions (27a) and (28a) in the presence of two spheres yield one secular 
determinant for each p. The integer p characterizes the rotational behaviour of the 
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fields under investigation and runs from - r;! to  + CO. Each determinant is dissected 
into two parts according to the behaviour of the fields on exchange of sphere 1 for sphere 
2. The secular determinants arising for p and - p  differ by the sign of the coupling 
parameters W;,,([), that is, by the way of coupling electric and magnetic modes. They 
become identical if the sign of the amplitudes a2(n, 1 )  is appropriately changed. The 
determinant arising for p = 0, consequently, does not contain any coupling of electric 
and magnetic modes. 

The order m of the spherical Bessel functions generally runs from JpLJ to  infinity. The 
dipole interactions merely enter the secular determinants p = 0, I ; the quadrupole 
interactions merely enter the secular determinants p = 0, 1,2. Any monopole inter- 
actions are excluded by Vg,([) = 0, W&([)  = 0, that is, there are no fields (la) and (2a) for 
m = 0. The secular determinant arising for p = 0 starts with the dipole term m = 1. 

Using (30) to (32) we find after partial integration with respect to frequency 

with the Green function g(io;  p ,  *)  representing the ratio of secular determinants for 
finite and infinite separation 

. . .  I 
The coupling parameters Vg,(ii) and Wk,(i[) necessary for treating interactions up to 
octupole are summarized in table 1. 

Table 1. Spherical coupling parameters 

P m n b k  

0 1 0 
1 

2 0 
1 
2 

3 0 
1 

1 1 1 
2 1 

2 
3 1 

0 0  
0 1 1  
0 0 0  
0 1 3 3  
0 1 5 12 12 
0 0 0 0  
0 1 6 15 15 

1 1 1  1 1  
1 3 6 6  1 3 3  
1 5 21 48 48 1 5 12 12 
1 6 21 45 45 1 6 15 15 

2 2 2 0 8 24 48 48 0 8 24 24 
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If we restrict ourselves to dipole interactions, use a perturbation expansion for 
g(io, p, f), and carry out the summations over p = - 1,0, + 1 and over f, we end up 
with 

with ( = klr, - rll. We obtain an electric, a magnetic and a mixed contribution. Taking 
the limit R -, 0 we find the electric term to agree with the findings reported by Casimir 
and Polder (1948) for the retarded vdW energy between atoms. These authors use 
quantum electrodynamics and fourth-order perturbation theory. An equivalent result 
has been obtained by Mitchell et a1 (1972) who considered the interaction of retarded 
dipoles. Their calculations are based on the perturbation approach together with the 
surface mode hypothesis, that is, they represent the dipoles by spherical Bessel functions 
h\l)(kr). The first derivation of the electric term for macroscopic spheres was reported on 
the basis of the perturbation approach together with finite boundary conditions and a 
plane-wave expansion for the electromagnetic fields (Langbein 1970). 

The fact that all these earlier findings are re-obtained in spite of numerous simplifica- 
tions of the final expressions (35a) and (36a) shows the strength and generality of the 
present method. The theory is now complete and rigorous. It accounts correctly for all 
spatial symmetries of the system under consideration and includes both electric and 
magnetic interactions. Equations (35a) and (36a) are valid also for spin-spin interactions 
between two molecules. 

11. Pair energy : cylinders 

In the presence of two spheres we classified the electromagnetic fields by their rotational 
behaviour. In the presence of two cylinders we classify them by their translational 
behaviour. The boundary conditions (276) and (286) yield one secular determinant for 
each translational wavenumber k; k is continuous and runs from -cc to +CO. The 
secular determinants arising for k and - k are identical. Each determinant is dissected 
into two according to the behaviour of the fields on exchange of cylinder 1 for cylinder 2. 

The order m of the cylindrical Bessel functions runs generally from - co to +CO. 

However, by using the different behaviour of electric and magnetic modes on inversion, 
we were able to find relations (29b) between the field amplitudes for inverse order m 
and to dissect each determinant a second time. We thus have electric and magnetic 
secular determinants with m running from 0 to 00. (In view of the different behaviour of 
the fields on inversion the secular determinants arising in the presence of spheres likewise 
no longer depend on the sign of p.) 

From (30) to (32) we find 

with the Green function g,,Jio; k, f )  being the ratio of secular determinants resulting 



1162 D Langbein 

from (27b) and (28b) for finite and infinite separations 

Comparison of equations (35a) and (36a) with equations (35b) to (37b) shows the close 
agreement of the final results in the cases of spheres and cylinders. In both cases we end 
up with coupling parameters proportional to Km((). m is half an integer and ( equals 
klr, - rll for spheres, whereas m is an integer and (‘ equals Ilr, - rll for cylinders. The 
decrease of the susceptibility factor in the coupling parameters with increasing order m 
makes it possible to cut off the determinants g(iw ; p, +) and gK,Jio;  k, f )  after a few 
terms. 

If we restrict ourselves to a second-order perturbation treatment of the secular 
determinants gK,,(iw; k,  k) and carry out the summation over +,- and K, 1 we obtain 

with ( = l lr2-rll .  By using the asymptotic behaviour of K,(() for large arguments 
(equation (9.7.2) in Abramowitz and Stegun 1965) we find the integrand in (38b) to be 
proportional to e-’</(, that is, one inverse power of [ less than in the presence of spheres, 
(equation ( 3 8 ~ ) ) .  This entails that the retarded vdW energy between cylinders obeys a 
Ir, - r ,  I - 6  law at large separations rather than the Ir2 - rll -’ law found for spheres. This 
result was first derived by Mitchell et a1 (1973a, b) on the basis of the perturbation 
approach. Equation (28b) again contains an electric, a magnetic and a mixed contribu- 
tion to the total vdW energy. 

12. Rotation theorem 

When calculating the vdW energy of a symmetric cluster of macroscopic bodies, it is 
possible to classify the allowed electromagnetic modes according to the symmetry 
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group of the cluster. In the case of two spheres or cylinders inversion has been used. In 
the presence of a tetrahedral array of spheres there exist electromagnetic modes of s 
character and others which are multiplied by the phase factor exp(2nin/3) on rotation by 
2n/3. In the case of infinite lattices, eventually, we know that the allowed electromagnetic 
modes obey Floquet’s theorem. 

However, before we are able to exploit the latter symmetry operation, we need a 
rotation theorem for the spherical modes (la) and (2a). When applying the addition 
theorem (13a), inversely oriented spherical coordinates have been used at positions r1 and 
r 2 .  This choice of coordinates is obviously restricted to two bodies. If we consider more 
than two bodies and want to classify the allowed modes by the possible symmetry 
operations, we have to start with parallel coordinate systems of all bodies. To satisfy 
the boundary conditions at the surface of an individual body i, we have to rotate the 
coordinates at j to the connecting line ri- r j ,  to apply the addition theorem (13a), and to 
rotate the coordinates back in their former direction. 

Let us now consider the geometric situation shown in figure 3. The standard direc- 
tion of all coordinates is n. We want to rotate the coordinates at position r i  to the 

n 

t 

Figure 3. Rotation ton, = r i - r j .  

connecting line n1 = (ri - vj)/lri -rjl and denote the polar angle of n ,  in the system n by 
8, n . n ,  = cos 8, and the azimuth of n x n1 by 4. The polar angle and the azimuth of an 
arbitrary vector r - r j  in systems n and n ,  is denoted by 9 , ~  and 3 , ,  cp, respectively, the 
azimuth being counted relative to n x n1 in both systems. Then, from figure 4 we find 

cos 9 = cos 8 cos 9, + sin 0 sin 3,  sin cp, 

sin 3 sin cp = - sin 8 cos 3,  + cos 8 sin 3,  sin cp, 

sin 9 cos cp = sin 9, cos cp, 
and 

(394 
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Figure 4. Rotation theorem. 

The rotation changes the order p ,  but not the degree M of the spherical harmonics 
Yk(9, yp). We obtain generally 

1 + m  

where C(m, p ,  E., 6) may be represented by a Jacobi polynomial of argument sin2 is. 
After transposing the modes centred at position r j  to position ri by means of addition 

theorem (13a), we find spherical coordinates in the inverse direction n2 = - n ,  (see 
figure 3). To  satisfy the boundary conditions at the surface of body i ,  we have to rotate 
the coordinates back to the standard system n. The polar angle for the transformation 
from n2 to  n is n - 8. The cp axis n2 x n equals the axis n x n ,  used before. Hence 

+ n  1 

The coefficients C(n, 1, p ,  e) for complementary angles 8 and 71 - 0 and inverse degrees 
I, p and -1, - p  satisfy the relations 

C(n, 1, p ,  71 - e) = ( -  IT+  “(n, I ,  - p ,  e) (434 
and 

C(n, - I ,  - p ,  0) = C*(n, I ,  p ,  e). 

13. Lattice states 

We are now well prepared to treat the allowed electromagnetic modes and the vdW 
energy in lattices. Let us consider a lattice with basis vectors ci, i = 1,2, 3 (or i = 1 , 2  in 
the case of cylinders). We construct the allowed modes in lattices analogous to  (16), 
but with j running over all lattice sites r j  and all coordinates being oriented in a standard 
direction n. The translational invariance of the lattice entails that any allowed mode 
is allowed even after any translation, that is, we can classify all modes according to 
Floquet’s theorem and put 

ai(m, j )  = exp(iq . rj)ai(m). (45) 
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Equation (45) holds for bodies of arbitrary shape. Hence, in the case of spheres we 
start with 

D(r, q)  = 2 exp(iq . r j )  {curl curl(r - rj)al(m, p )  + k cur1(r-rj)a2(m, p ) }  
i 

whereas in the case of cylinders we use 

D(r, q)  = 2 exp(iq . rj){curl curl n eikza12(m) 
j 

w 
C 

+ - ( ~ , , p ~ ) ~ ' ~  curl n eik*a2,(m)}K,(llr -rj l)  exp(imcpj). 

The second argument of the amplitudes ai(m, p )  in the case of spheres is no longer the 
lattice site j, but the rotational wavenumber p .  In the case of cylinders it is still possible 
to classify the allowed modes by the translation wavenumber k. 

Continuity of the different components of the electromagnetic fields across the 
surfaces of bodies j gives rise to conditions (7) and (8). In order to satisfy these conditions, 
we have to transform all fields to an individual body i. In the case of spheres this implies 
that we have to rotate the coordinates at r j  to the direction r i - r j  by using rotation 
theorem (4La), to transpose the fields from r j  to r i  by using addition theorem (13a), 
and to rotate the coordinates back to the standard direction n by using rotation theorem 
(42a). We finish with fields centred only at r i  and by satisfying (7) and (8) we obtain 

%l"l l h  A+ x,(m)a,,(m, P )  

+xl(m)(2m+ 1) C expjiq. ( r j - r i ) }  exp(iv4j)C(n, v, E., e j ) ( -  I)'"-', 
j Z i  n , v , l  

(m-A)!  
(n+A)! X- (a,(n,  v)Wi,,, + a2(n, v) Vi,,,) exp( - ip4j)C*(m, i., ,U, O j )  = 0. (48a) 

The different sums and factors in (47a) and (48a) can clearly be attributed to the sequence 
rotation-translation-rotation. By changing the sign of p we find equations (47a) and 
(48a) turn into their complex conjugates. The secular determinant resulting from (47a) 
and (48a) is hermitic and its eigenfrequencies are real, if the susceptibilities involved 
are real. The different behaviour of electric and magnetic modes on inversion implies 

a,(m, - P )  = +aT(m,p); a2(m, --PI = T a t h  PI. (49a) 

Equations (47a) and (48a) permit an exact calculation of the spectrum of a lattice of 
spheres from that of single spheres. Each single line is split into a band. Modes belonging 
to the same band differ only by the wavenumber q. 
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Satisfying the boundary conditions in the case of cylinders involves much less effort 
than in the case of spheres. The respective rotation theorem is easy to  handle. Similar 
to our procedure in the case of spheres we denote by 4 the azimuth of n x n , ,  where n 
is parallel to the cylinder axis and n ,  = ( r i - r j ) / / r i - r j / .  Then, by using the addition 
theorem (12b) and applying boundary conditions (7) and (8), we find 

where x,(m), x,(m), nl(m), n,(m) are given by equations (20b) to (23b). 
Equations (47b) and (48b) differ from the respective equations (276) and (28b) in 

the presence ofonly two cylinders mainly by the generalized phase factor exp{iq . ( r j - r i ) } .  
By changing the sign of m we find equations (47b) and (48b) turn into theircomplex 
conjugates. We end up with a hermitic secular determinant and real eigenfrequencies 
so that 

a1A-m) = +aTz(m); a,,( - m) = T a:,(m). (49b) 

14. Lattice energies 

To calculate the vdW energy between bodies in a lattice, we again apply the complex 
integration technique described in $6 8 and 9. We need the secular determinant resulting 
from (47). (48) only at imaginary frequencies. By turning to the limit of infinite cavities 
we may simplify equations (47a) and (48a) by using (33a) and (34a). V;,(ii) and W;,(ii) 
are obtained if the addition theorem (13a) is applied to Bessel functions h i ) ( i i )  of the 
third kind. Both coupling parameters decrease exponentially with increasing i i  (see 
table 1). 

In the presence of two spheres one secular determinant has been obtained for each 
rotational wavenumber p. In a lattice of spheres a classification of modes according 
to their rotational behaviour is in general no longer possible. Equations (474 and (48a) 
couple all multipoles m = 1,2 , .  . . and - m  d p d +m. Only the monopole m = 0 is 
excluded owing to V&(i )  = W&,(i) = 0. When considering two spheres we found even 
and odd states in the case of inversion. A lattice of spheres is classified by Floquet's 
theorem, that is, the summation over +, - in (354 is now replaced by an integration 
over q. The integration includes all q values yielding different modes and thus runs 
over one cell of the reciprocal lattice b,, where bi . c j  = 2nSij; i, j = 1,2, 3. Hence, 

The Green function g(io ; q)  represents the ratio of secular determinants resulting from 
(474 and (48a) for finite and infinite separations. 
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If we consider dipole interactions alone, g( io;  q) is found to be given by a secular 
determinant of order six. It contains the terms m = 1, p = - LO, + 1 and electric and 
magnetic contributions. Then, the evaluation of (50) needs very little effort. 

In the presence of two cylinders we were able to distinguish between secular deter- 
minants for electric and magnetic modes. In a lattice of cylinders, where equation (29b) 
is replaced by equation (49b), we find electric and magnetic mode coupling. The sum- 
mation over the symmetry characters +, - in (35b) is again replaced by an integration 
over the wavenumber q, which extends over one cell of the reciprocal lattice bi. Since 
in the case of cylinders the lattice and the reciprocal lattice are two dimensional, it is 
logical to account for the translational invariance in the direction of the cylinder axis 
by a third lattice vector c3 of zero length. The reciprocal vector b, then has length 
infinity, that is, the k integration in (35b) is the integration over the missing third com- 
ponent of q, and we once more end up with equation (50). 

15. Conclusions 

The use of finite boundary conditions permits the application of the Green function 
technique without encountering any difficulties related to branch points and different 
Riemann surfaces. The systematic classification of all electromagnetic modes according 
to the symmetry operations of the array under consideration leads to a considerable 
reduction of the secular determinant involved. The simultaneous use of these two 
principles results in an analytic representation of the vdW energy, which involves a 
secular determinant of order six if we restrict ourselves to dipole interactions, and 
a secular determinant of order sixteen if the problem is restricted to dipole and 
quadrupole interactions. 

This enables us to tackle the topical problem of the structure of rare gas crystals. 
It is in these lattices where the conventional perturbation approach to vdW attraction 
appears to be most unsatisfactory. Ever since the first investigations into triplet vdW 
interactions by Axilrod and Teller (1943) attempts have been made to explain the energy 
gain of the face-centred cubic structure relative to the hexagonal close-packed structure 
on the basis of multiplet contributions (Jansen 1964, Jansen and Lombardi 1965, 
Fowler and Graben 1972). However, the multiplet and higher-order perturbation 
terms converge but slowly. None of these interactions favours the face-centred cubic 
structure to such an extent that the next higher terms might not inverse the result. The 
present theory, which by taking the limit R + 0 includes atoms, avoids all multiplet 
expansions by making use of Floquet’s theorem. 

Knowledge of the vdW energy of two-dimensional arrays of cylinders is required, 
for example, for an understanding of viral self-assembly, in models of muscle energetics 
and in investigations of crystalline polymers. 

In view of the effort involved in transposing and rotating electromagnetic modes 
one may be tempted to utilize the expansion in terms of plane waves reported earlier 
(Langbein 1970). This treatment offers the advantage that all symmetry operations 
(inversion, translation) are taken into account from the very beginning and that the 
addition theorem becomes particularly easy. However, there is no physically relevant 
method of reducing the resulting secular determinant to finite order except for the 
restriction to dipole and quadrupole interactions. This is possible only on the basis of 
the spherical and cylindrical modes used here. 
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